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Abstract Considering the example of winter wheat crop production in France, a Markov decision problem (MDP)
model was built to characterize optimal state dependent technical strategies for crop management. Stochastic
dynamic programming algorithms could theoretically solve the problem of automatically generating optimal
strategies. Unfortunately, the important size of state and decision spaces precludes this option. In this paper we
present an alternative methodology called reinforcement learning. Reinforcement learning is one of the major
approaches to soive Markov decision problems with unknown transition prababilities. R-learning, one of the most
studied reinforcement learning algorithms, maintains estimates of the average reward p and of the relative value
functions R(s,d) of choosing decision 4 in state 5, from which an optimal strategy can be derived. Application of R-
learning to the crop management problem leads to a regular updating of the p and R parameters after each trial of
the crop simulation, for different one-year weather series. The JITEK software implements this algorithm on the
basis of a winter wheat crop management simulation tool cailed DECIBLE and a stochastic weather simulation
modet. Applied to the problem of maximizing yield under a strong constraint on the soil nitrogen pollution,
interesting new strategies have been obtained and compared with more classical crop management decision rules
defined by agronomy and farming system experts.

. INTRODUCTION etc. The present paper is an introduction to this
reinforcement learning methodology we applied to

Considering the new economical context and the the DECIBLE simulation tool for winter wheat

""" growing environniental precccupation in European” T crop miandgeémient, that has resulied 16 d Software”

agriculture, it is a common opinion that some new called XITEK.

production models have to be defined. For the

specific_question _of technical crop management 2. DECIBLE: A WHEAT CROP

like wheat, maize, etc., simulation tools based on MANAGEMENT SIMULATOR

crop models have been considered in increasing

numbers over the last two decades, and proved The DECIBLE software has been developed by

themselves to be very efficient for estimating the INRA (the French national institute on agronomic

economic and environmental effects of particular researches) and I'TCF {the industry federation for

technical decisions concerning the selection of the cereals and fodder crops} as a decision support

variety, seed rate, sowing date, fertilization, etc., model  for designing  winter wheat crop

hence helping in the manual design of new crop management operational strategies by means of

management strategies {(Attonaty et al. [1999]). simulation. It is built on 3 main models that day
after day simulate the crop, weather and decision

The main objective of the work presented in this processes.

article is to apply powertul optimization algorithms

to this simulation confext, in order to suppori The weather model specifies for each day the

agronomist  engineers and  researchers  in temperature, the solar radiation, the potential

automatically designing technical crop evapotranspiration, etc. These data  esther

management strategies. The new methodology we correspond to some historical climatic scenario, or

develop and apply to this problem is called are  randomly generated using the weather

reinforcement learning. It is a kind of stochastic generator proposed by Racsko et al. [1994].

dynamic  programming approach based on

simulation, very popular in the field of machine =~ The crop model consists of a set of empirical

learning and artificial intefligence, that has been modules that simulate the plant development and

successfully applied to complex domains like yield build-up. It can model the agronomic

autonomous robotics, manufacturing production, consequences of a large range of crop husbandry
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operations. Inputs of this crop model are the
weather data, some soil variables defining the soil
context, like texture, density, and cropping history,
and precise husbandry operations produced by the
deciston model (Meynard [ 1997}).

The decision model determines the daily
operations from the observation of some indicators
concerning climate, crop state, previous operations,
eic. The input of this decision model is a crop
management strategy expressed as a set of formal
decision rules IF THEN ELSE.

3. THE OPTIMIZATION PROBLEM

The problem we have chosen to tackle in order to
illustrate  the reinforcement learning approach
applied to the DECIBLE crop management
simulation (ool consists in finding strategies that
satisty two contradictory gqals such as:

- to maintain under the prescribed limit the
aitrogen content of drinking water going out
of the parcel;

- [0 obtain a satisfying production level.

That problem, defined with the help of agrenomy
and farming system experts, has been chosen since
n0 a priori corresponding optimal strategies are
known, making weil-justified the use of a
simulation tool like DECIBLE to explore different
potential solutions,

In order to implement a reinforcement learning
afgorithm for solving this optimization. probiem,
the generality of the formal language used in
DECIBLE for expressing ¢rop management
strategies has been circumscribed and the decision
problem we consider has been modeled as a
Markov Decision Problem (see Kennedy [1988],
Puterman { 1994]).

Within the MDP representation, winter wheat crop
management can be divided into a sequence of &
decision steps concerning sowing, fertilizing, etc.
until harvest. Bach step { has an associated state
space §; and decision space D, and these spaces 5,
and D; are respectively characterized by a set of
state and decision variables. A trajectory of this
decision process is the result of choosing randomly
an initial state s in S; and applying a decision d
fromstos in 5;, and so on until Sy .

Two important characteristics of MDP models

concerns the Markov property of the uncertain

dynamics and the ohjective function. The Markov
property requires that the stochastic transition from
sin 8 to § in 8., given the decision d in D, is

completely determined by the probability P, (s’ Is,
j. Concerning the objective function, we assume
that the criterion to be maximized can be
represented as the expected value of an additive
ohiective function V = Efrj+..+ry) where the r,
terms are local rewards associated to  each
transition (s,ds’) from 5 w &, along the
trajectory. Of course, that criterion can also only
depend on the final state (for instance the yield).
Furthermore, this criterion can be the result of a
nember of calculations (veto, weighted sum. etc.)
and thus can aggregate different performances.

A policy is a function that maps states to decisions.
For finite-horizon problems. such a policy /7 can
be represented as a set of sub-policies (/7. 7T}
IZach sub-policy /7. is defined as a function which
maps siate s in 5; te decision d in I,

Hence, given a policy and an initial state 5 in §; we
are able to determine step after step until harvest,
what are the decisions to apply w0 the crop.
depending on the current state that depends itself
on the initial state, on previous decisions and on
the uncertain weather. Considering a Markov
decision process and an objective function, the
question is then to define and generate an optimal
policy f7that maximizes V,, = E(rj+.. +ry | 7T

3.2 Modeling the Optimization Problem

For the optimization problem considered in this
article,we -have - retained - M=3-decision- “steps;
respectively sowing, first apd second nitrogen
supply. The corresponding state and decision
spaces are defined by the state and decision
variables presented in table 1. The state variables
for the 2 nitrogen supplies are retained for their
capacity 1o summarize the past trajectory of the
process at the current steps, and thus to approach
the Markev property as close as possible. The state
variable of the sowing step ¢S is introduced as an
external constraint to the problem, since this
sowing time is modeled as a random variable.
Decision variables have been fixed after
agronomists confirmed that they were the main
influent variables modeled in DECIBLE for the
considered objective.

The variable domains of the table correspond to
the optimization cases we will present in section 5.
One can note the relative definition of the dN/ and
dNZ2 domains, meaning that a policy does not
specify an absohite date, but rather a relative date
before or after the appearance of tillering or stem
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Sowing

| st nitrogen application

2nd nirrogen application

- sowing time 43
& [OU10,15/12]

State
Variables

e {0,200]

- tillering dT
e [15/11,61/04]
- number of plants VP

- residuat soil nitrogen Ns e [0,100Tkg/ha
- start of stem elongation dfem

& [15/02.15/03]

- aerial biemass balom € [().Evil(]]gz’m2

- seed rate g8 - date AN/
& 1100,200]g/m?
- wheat variety 5

e [soissons, artaban, ..}

Decision
Variahles

& [dT-3,47+20}
- quantity g7
= [0.100}kg/ha

- date dN2

e [diem-5.d]em+20]
- quantity gN2

e [0,2007kg/ha

Table 1: State spaces and decision spaces of the MDP model.

In order to model the optimization problem defined
at the beginning of this section, our choice has
been to consider the following objective function ¥
g7 = E( ¥t IT) where the variable Y stands for the
annual yield when the value of the post-harvest-
nitrogen-in-soil variable PHN 1s iess than 30kg/ha,
and is equal to 0 when PHN is greater than

30kg/ha:
Y= {

This sharp criteria has been intentionally chosen in
order (i) to correctly mode! the 30kg/ha limit as a
strong constraint on the crop management, and (7i)
to tacilitate the comparison with crop management
strategies hand-coded by experts.

yield if PHN < 30kg/ha;
0 cisewhere.

(1)

4o A-REINFORCEMENT LEARNING. -
APPROACH

4.1 A Dynamic Preogramming Algorithm

The problem of automatically generating optimal
strategies maximizing Vry could theoretically be
solved by using a finite-horizon dynamic
pragramming algorithm {Putterman [1994]). TFhis
algorithm is based on the classic Bellman's
optimality equations on value functions V; mapping
510 IR,

Vi< N,Vse §;

Visi=max 3 P(s15,d) (5,4, s + Vi (8)) ()
e 0 -

where V, is the terminal value function defined on
Sy . From the optimal value function Vi1 = [V,
.V } solution of (2}, the optimal policy 7 = {77
-, I Ty} 1s then determined by

ViaN,VseS; (3}

M, (s =argmax 3 P(s15,d) (1 (5.d,8") + Vi ()

de D,

Unfortunately, two characteristics of the problem
prevent us from directly applying this algorithm:

= Most of the siate and decision variables have
continuous domains, forbidding the use of a
discrete  representation  of the V, value
functions.

= we do not have a formal markovian mode} of
the stochastic crop growth process with its
transition probabilities, and we can only use
the DECIBLE simulation tool.

4.2 The Reinforcement Learning Approach

The reinforcement learning approach consists in
learning optimal policies by repeatedly modifying
a value function on the basis of a repeated
experimental evaluation of the pelicy determined
by the current value function (Sutton et al. {19981}

Today. reinforcement. learning is..one. the major..

approach to solve Markov decision problems with
unknown transition probabilities and/or with large
state variable domains (Bertsekas et al. [19961).

The most studied reinforcement learning
algorithms like Q-learning and R-learning (see
Kaelbling [1996]) were developed for stationary
infinite-horizon Markov decision processes. In
order to apply these algorithms to the crop
management problem we consider, we proposed an
adaptation of Q-learning and R-learning to the case
of non-stationary finite-horizon MIDPs {Garcia et al
[1998]). In this paper we only present the adapted
R-learning approach, since that was the method
that led to the best experimental results,

R-learning, like Q-learning, is often called a direct
adaptive method since if does not rely on an
explicit model of the markovian process. The
principle of R-learning in finite-horizon is to learn
estimates of the average value

N

B~y )

i=l

@) .

and of the relative value functions
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N
Rifs,d) = E( z no-pls=sa=d) (5
i=i
for an optimal policy. When these estimates have
been learned, the optimal policy can be cobtained
through (6):

Vi, ¥se §, T (s)=argmax R (s,d) (&)

de Dy
In the case of a finite-stage process like the crop
management problem, these estimates R, and p are
regularly updated after each trial of the crop
simulation. At each iteration n the decisions taken
at each stage are determined either from the current
optimal policy (greedy-policy} calculated from the
current values B with the same formulae than (6),
or are chosen randomly in order to explore the
domain.

¥ we assume for the moment a discrete state and
action representation, the R-learning algorithm we
implemented is the following, where o, and B, are
small learning rates decaying over time:

Initialize p and R, 10 0

Forn=11ton,, Do:

- Choose s; in 5,

- Generate with DECIBLE a one-year random
trajectory from s, following the greedy or a
random policy;

- Fori=3t 1 Do:

Rilsppdp) e Rilsppd)tog (n—p+

if d, is greedy,
P p+ (- pt

max g Ry (5.d) — Ry (s7,d),
where n, =r =0, r=Y"and R;()=0

Return pand R; .

max ;. R, (Sy,d )R, (5,4, )

Figure 2 : R-learning algorithm : the tabular case.

4.3 Parameterized Value Functions

One of the main interests of reinforcement learning
algorithms like R-learning stems on their capacity
to be adapted to continuous or large-scale state and
decision variable domains. When the tabular
representation is not possible, the value functions
R; that determine the optimal policy 77 at each
decision step can be parameterized in many
different ways from neural networks to weightad
decision rules, for which reinforcement learning
update rules still can be defined. Among these
representations, the linear architectures are, with
no doubt, the simplest ones and thongh are often

very efficient. They consist in modeling the value
functions R; as a linear combination of a small
number of features ¢f, that describe states and
decisions:

P
Risd)= Y df; disa) 7

k=l
In that case the adaptation of the R-learning
algorithm is direct, the R/(5,d) terms being replaced
by the weights of; and the error terms being
multiplied by the gradient terms ¢f(s, d,). In our
application these features have been chosen
following a method called CMAC (see Sution
[1998]). The CMAC representaiion consists of 2
number of uniform partiions of the state and
decision domains, which are shifted with respect to
gach other, in order to define as many binary
valued features that there are cells in the partitions.
This  representation is classically used for
estimating functions in a continuous  space,
particularly in reinforcement learning,

4.4 Auntomatic Rule Extraction

Parameterized representations like CMAC do not
allow neither a practical comprehension of the
generated policies nor their direct exploitation for
crop management by farmers or agronomists, Thus
our next objective has been to automatically extract
simple decision rules from these CMAC policies.

..The  firgst. method. we.  have. implemented..was......

proposed by Craven [1996]. Binary regression
trees mapping S, to D; are directly built from the
optimal policies 77 that have been learned. We
have used the C code of the Splus rpart package of
Therneau et al. {1997]. The tree is classically built
as follows: a first state variable is found that best
splits the initial node §; into two groups, and then
this process is recursively applied to each sub-
node, until a minimum size is achieved or until no
improvement can be made. The fitted value of a

node is its mean value I1; , and the error of a node

is determined as ifs variance Zﬁﬁ?—— ?[,-{.s'}uz .

Ry

The regression tree that are built through that
method are very dependent an the nerm on 7, that
18 considered in the node error, and on the 77(s)
values. As these values have been obtained by
minimization of the R(s,.) furictions, they are most
of the time altered by some more or less important
noise resuiting from learning. Applied to our
optimization problém, that method resulted. as we
expected, unsatisfying decision rules when the
number of rules was constrained to be small,
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In order to overcome that problem, the second
approach we have developed consists in reversing
the maximization process by (i} building binary
regression trees 7; from the R, CMAC value
functions mapping $; x 0, to IR and (ii) extracting
from these 7, trees new binary decision trees
MAXT,. The main interest of the first step is that
now the whole information included in the learned
functions R, is exploited within the regression
process, that does not depend anymore on a
specific norm on D, : the node error is classicatly

defined as z (f—{:-— R,(.f?,a’))2 .
yof

An original algorithm has been developed 1o
compute efficiently MAXT, from ¥, (Garcia
[1996]). The important point to note is that the
outputs of the binary trees MAXT; are not spectic
values but rather intervals for each variable of D,
These binary trees MAXT; lead directly to policies
represented as a set of exclusive decision rules
like:

IF sx€[SX0in7 $Xmaed ASYEISYpind S¥maed A -
THEN dxe [dx,,: ditgad Adye . (8)

where sx, sv, ... and dx, dy, ... are respectively the
state and decision variables of ane of the N stages.
The interpretation of this kind of rule is the
following: when the previous rule is active, any
decision dx, dy, in the intervals [dx,i,.

. “dx;-'naxl"i“'fd}"minf“d;‘f‘mcur]"‘"'-“- .can-be.chosen.with. ...

approximately the same optimal effect on the final
objective Y.

3. EXPERIMENTAL RESULTS
5.3 Four Considered Cases

The XITEK software is an C implementation of the
previous algorithms. It was tested on four different
problem configurations, and the generated policies
were compared with four crop management
strategies represented with DECIBLE decision
rules, designed by agronomy and farming systems
experts. In this four cases, the decisions of the first
sowing stage were completely predefined in order
to simplify the result analysis and the comparison
with experts.

In agreement with the experts, the four cases were
selected for the soil and climate context of the
Paris Basin. These cases were defined by
considering two distinct winter wheat varieties (the
decision variable vS), SOISSONS and ARTABAN,
and two field situations with different soil nifrogen
reserves available to the crop at the end of winter,
corresponding to “POOR soil” (Vs = 50 kg/ha) or

“RICH soils” (N,,n = 150kg/ha). The seed rate ¢S
was fixed to 200 kg/ha,

3.2  Learning Parameters

The CMAC value functions for the first and second
nitrogen supplics were defined using 5 shifted
grids of 4x7x3x3 cells for Ry and 5x5x5x3x5 cells
for R;. Thus the 2 functions R; and R, were
completely  specitied given the values of
252+1875=2127 ¢ parameters.

The learning parameters were fixed to
0.03 0.01

LX {8, O} = mmmmmsscisis. H
5a) 1+1log N(s,a) '

)

I+logn

where N(s,a) is the number of time where pair (5,a)
was visited at time n.

The greedy policy was chosen in 85% of the
trajectories, The initial values of the R; parameters
and of p were fixed randomly in [0,1]. Alter
different trials, we retained a learning length of
800,000 one-vear trajectories {about 10 hours of
compuation time on a Linux Pentium PC).

The MAXT; trees were built so that they define less
than 10 decision rules at each stage.

5.3  Analysis of the Learned Strategies

In order to evaluate the learned policies, we
simulated them on 5,000 random trajectories. For

the binary decision trees, we always chose the mid-

action between [dx,;,; dx,,./ for each dx
decision variable.

The expected-value of the output.-variable ¥Y.and the
percentage of simulated years where PHN was over
30kg/ha are presented on tables 2 and 3. As we can
see all the four cases were satisfactorily solved
concerning the PHN constraint.

E(Y); BPHN>30kg | POOR soil RICH soil
ARTABAN 7175 1.3% | 7840:54%
SOISSONS 65,05, 12% | 91,206;0,7%

Table 2: CMAC policy evaluation.

E(Y); %BPHN=30kg | POOR s0il RICH soil

ARTABAN 65.29:0,1% | 8045,.33%

SOISSONS 66,27 ; 1,2% | 89,84, 02%

Table 3: Decision tree policy evaluation.

In some cases, Y or PHN results are better with the
decision tree policies than with the-original CMAC
policies. That can be explained by the fact that
regression trees are a way of smoothing noisy data,
and thus can improve CMAC policies by extracting
continuous trends in the R; value functions.
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The performance of these policies concerning the ¥
final objective were estabiished by asking to the
same experts to design manually DECIBLE
decision rales that optimize the yield output under
the PHN constraint. These experts made during
several days an intensive use of the DECIBLE
simulator and this manual optimization led to some
simple DECIBLE decision rules the performances
of which are shown on table 4,

ECY) | % PHN=30kg | POOR soil RICH soil
ARTABAN 7447 0% 86.93:645%
SOISSONS 68,35:0.4% | 89,60 ;69%

Table 4: Expert decision rules evaluation.

As one can note, the expected yiglds ¥ obtained
with the CMAC and decision tree policies are very
close to the results of the expert strategies. Except
for the SOISSONS-RICH case, these expert
strategies seem to be better than the learned
strategies. That 1s not so surprising since (i) the
learning process was not necessary conducted until
15 complete convergence ; (i) experts knew very
well the behavior of the DECIBLE model, and (1i1)
they had access to the CMAC policies learned with
KITEK. It 18 interesting to sec that nevertheless,
they didn’t manage to design a PHN satisfactory
strategy with a high expected annual yield for the
SOISSONS-RICH case, but that XITEK did it

We have presented in this paper an application of
the reinforcement learning “methiodology w0 the
problem of oplimizing by simulation sequential
decision processes for crop management in
agricultural  production  systems. Experimental
results on 4 cases specified by agronomy and
farming system scientists have shown that the
approach is reliable, generating satisfactory crop
management decision rules.

Nevertheless, the XITEK software didn’t manage
W generate a strategy that performs really better
than the decision rules designed by experts. We
explain that by the small number of decision steps
of the problem, and we are currently implementing
the same reinforcement learning approach on a
more  complex  seguential  decision  problem
concerning uwrigation scheduling of maize crops
{Berger et al {19997).
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